Index

abnormal operations 133
absorption rule 233, 234, 236
abstract rules 231–2
abstract systems 11
ACARS (ARINC communication addressing reporting system) 130
accessibility 82–3
accommodation 132–3
adaptation 6–7, 65, 183–99
Advanced Design organizations 192
advanced technologies 15–19
aerodynamics 16, 119
air conditioning 124–5
air distribution 57
air traffic control (ATC) 93
Air Transport Association (ATA) index 12
air transport mission matrix 30–34
airborne telephones 127
aircraft-level functions 29–40
airframe segment 14, 139–41
airframe technology 15–16
allocation 247–9
allocation of functions 50
analysis by similarity 161
analytical capability 220
anunciations 129
ANSI/EIA 632 4
anthropocentric view 11, 269
anthropometry 72–3
APU (auxiliary power unit) 139
arquitectura 11–15, 98–9
ARINC communication addressing reporting system (ACARS) 130
ARP 4754 143
ARP 4754A 143–4
ammembly 27
assumed requirements 51, 173
ATA (Air Transport Association of America) index 12
ATC (air traffic control) 93
audio mixing 128
auto flight 126
automated function support rule 236
automated requirements tools 177
automated system monitoring support rule 240–41
automated tools for SE 259–60
automatic data reporting 130
automation 75–6
auxiliary power units (APU) 139
auxiliary segment 14, 139
avionics segment 14, 126–31
AVOID 239
baseline concept documents (BCD) 177
basic reliability equation 247
BCD (baseline concept document) 177
BFE (buyer furnished equipment) 173
bird strikes 238
BITE (built-in test equipment) 83
blended-wing-body (BWB) 18–19
brakes 135–6
Breguet range equation 113
built-in test equipment (BITE) 83
buyer furnished equipment (BFE) 173
BWB (blended-wing-body) 18–19
cabin pressure 125
cabin subsystem 14
cargo capability 39
cargo handling 17
cargo operations 33
CAST (Commercial Aviation Safety Team) 150–58
CCA (common cause analysis) 146
CDR (critical design review) 174
center of gravity (c.g.) 70
center of pressure (c.p.) 70
certification 27, 60–61, 143–58
process 145
and software 147–50
 verification 159–63
 Certification organizations 193
c.g. (center of gravity) 70
 change-based aircraft 10
 chief engineer 64
 Chief Systems Engineer (CSE) 168
civil aviation agencies 67
 climb 112
 cluster model 40–41
cockpit subsystem 14–15
cognitive requirements 74–5
 cohesion 87, 188, 240
 Command and Control Aircraft function
 36–7, 126
 commercial aircraft 9–20
 development roadmap 5–6
 Commercial Aviation Safety Team (CAST)
 150–58
 common cause analysis (CCA) 146
 Communicate Data/Information function
 37, 126–8
 communications 37, 93, 126–8
 completeness 87
 complexity 203–7, 236–8
 and humans 203–4
 measurement 212
 and organizational interfaces 204–5
 and regulatory agencies 206
 and variability 205–6
 complicated systems 237
 component mismatch requirements 86
 component procurement 20
 components 221
 concept development 25
 Concept of Operations (CONOPS) 29–30
 concrete solutions 231–2
 concrete systems 11
 conditioned air 89
 configuration management 167, 180
 Configuration Management department
 188
 CONOPS (Concept of Operations) 29–30
 consequences of risks 219
 constraints 46, 67–86
 economic 115–20
 software 149–50
 subsystem 141
 top-level 114–15
 Contracts organizations 197
 control commands 75
 cooling 126
 corrective action support rule 239
 corrosion 80
 cost allocation 118–20
 cost constraints 85
 cost control 180
 cost of spares 83
 c.p. (center of pressure) 70
 crash position indicators 127
 crew accommodation 39, 114, 132–3
 critical design reviews (CDR) 174
 cruise range 113
 CSE (Chief Systems Engineer) 168
 culture and risk management 215
 Customer Engineering 192
 customer requirements 50–51
 verification of 162
 customer specifications 176
 dark cockpit philosophy 129
 data recording 129
 data reporting 130
 DCAS (digital core avionics system)
 128
 defense in depth 234–5
 degradation of aircraft 233, 234, 239
 deliverables 167
 demonstrations 161
 department names 188
 derivative aircraft 10
 derived requirements 53–4, 113
 design 25–6, 97
 meaning of 232
 design diversity 231–2, 234
 design for manufacturing and assembly
 (DFMA) 53, 85
 design organizations 190–91
 design requirements 46, 85
 design reviews 166–7, 170–75
 design rules 231–43
 interdependencies 232, 242–3
 design standards 84
 design tools 18
 desirable quantities 45
 detection support rule 239
Determine Location of Aircraft subfunction 130
Develop Aircraft Concept function 25
development 10, 26
development costs 55
development fixture (DF) 95
DFMA (design for manufacturing and assembly) 53, 85
digital core avionics system (DCAS) 128
dimensions 70
direct operating costs (DOC) 56, 115–20
dispatch reliability 56, 71
disruption cycle 230
DOC (direct operating costs) 56, 115–20
documentation 175–7
drag 112
drift correction rule 236, 238–9
durability 58
dust 79
economic constraints 115–20
economic requirements 43
economics 19
EDF (electronic development fixture) 95
egress 73
electrical loads 57
electrical power 131–2
electrical power interfaces 89
electrical segment 14, 131–2
electromagnetic interference (EMI) 78, 84–5
electronic design reviews 172
electronic development fixtures (EDF) 95
emergency 203
emergency equipment 134
emergency operations 33–4, 77
EMI (electromagnetic interference) 78, 84–5
emissions 57
emitted quantities 45
empennage 140
engine performance 119
engine sizing 110–11
engine speed 132
engineering safety reviews (ESR) 175
enterprise SE (ESE) 2–3
environmental control 38–9, 114
environmental segment 13, 124–6
environments 76–81
equipment safety 76
ESE (enterprise SE) 2–3
ESR (engineering safety reviews) 175
evacuation 134
events 230
examinations 162
example specification 251–7
existing processes 185
external interfaces 91–2
external noise 57
external operational interfaces 93
external requirements 50–53
facilities 13, 92
facilities functions 29
fatality rate 158
fault detection 83
fault isolation times 81
fault recording 129–30
FBL (fly-by-light) 16
FBW (fly-by-wire) 16
FCA (functional configuration audit) 174
Federal Aviation Administration (FAA) regulations 68
FFR (first flight review) 174–5
FFRR (first flight readiness review) 174–5
FHA (functional hazard assessment) 145–6
first flight readiness reviews (FFRR) 174–5
first flight reviews (FFR) 174–5
fixed interval maintenance 82
flight controls 134–5
flight crew 73, 120
flight deck 74–5, 133
Flight Director 131
flight envelope protection 18, 240
flight management system (FMS) 131
flight manual 191
flight operations 32, 34–8
Flight Operations organizations 191
flight paths 19
fly-by-light (FBL) 16
fly-by-wire (FBW) 16
FMS (flight management system) 131
foreign object debris (FOD) 80
4D trajectory 19
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>freighter operations</td>
<td>33</td>
</tr>
<tr>
<td>fuel consumption</td>
<td>57</td>
</tr>
<tr>
<td>fuel management</td>
<td>36</td>
</tr>
<tr>
<td>fuel subsystem</td>
<td>136–7</td>
</tr>
<tr>
<td>functional analysis</td>
<td>21–42</td>
</tr>
<tr>
<td>functional binding</td>
<td>237</td>
</tr>
<tr>
<td>functional configuration audit (FCA)</td>
<td>174</td>
</tr>
<tr>
<td>functional hazard assessment (FHA)</td>
<td>145–6</td>
</tr>
<tr>
<td>functional interfaces</td>
<td>88–90</td>
</tr>
<tr>
<td>functional redundancy</td>
<td>41</td>
</tr>
<tr>
<td>functional redundancy rule</td>
<td>231–2, 234, 236</td>
</tr>
<tr>
<td>functional requirements</td>
<td>43–4</td>
</tr>
<tr>
<td>functions</td>
<td>21, 22</td>
</tr>
<tr>
<td>allocation of</td>
<td>50</td>
</tr>
<tr>
<td>fungi</td>
<td>80</td>
</tr>
<tr>
<td>fuselage</td>
<td>140</td>
</tr>
<tr>
<td>galleys</td>
<td>133–4</td>
</tr>
<tr>
<td>Generate Aero Forces function</td>
<td>35–6</td>
</tr>
<tr>
<td>geographical regions</td>
<td>77–8</td>
</tr>
<tr>
<td>global positioning system (GPS)</td>
<td>130</td>
</tr>
<tr>
<td>global supply chain</td>
<td>201</td>
</tr>
<tr>
<td>GPS (global positioning system)</td>
<td>130</td>
</tr>
<tr>
<td>guidance</td>
<td>75</td>
</tr>
<tr>
<td>hard systems</td>
<td>204</td>
</tr>
<tr>
<td>harmonics</td>
<td>54</td>
</tr>
<tr>
<td>heat</td>
<td>90</td>
</tr>
<tr>
<td>HF (high frequency) systems</td>
<td>127</td>
</tr>
<tr>
<td>hidden interactions</td>
<td>169, 236–7, 241</td>
</tr>
<tr>
<td>hierarchies</td>
<td>12–13, 14–15</td>
</tr>
<tr>
<td>high frequency (HF) systems</td>
<td>127</td>
</tr>
<tr>
<td>High Speed Civil Transport (HSCT)</td>
<td>17</td>
</tr>
<tr>
<td>high-intensity radio fields (HIRF)</td>
<td>78</td>
</tr>
<tr>
<td>holism</td>
<td>49, 98, 229</td>
</tr>
<tr>
<td>holistic risk management</td>
<td>218</td>
</tr>
<tr>
<td>HSCT (High Speed Civil Transport)</td>
<td>17</td>
</tr>
<tr>
<td>human error support principle</td>
<td>236</td>
</tr>
<tr>
<td>human factors</td>
<td>17–18, 71–6, 203–4</td>
</tr>
<tr>
<td>human in the loop rule</td>
<td>235–6</td>
</tr>
<tr>
<td>human monitoring support rule</td>
<td>240</td>
</tr>
<tr>
<td>human-automation interfaces</td>
<td>93–4</td>
</tr>
<tr>
<td>human-centered automation</td>
<td>75–6</td>
</tr>
<tr>
<td>humidity</td>
<td>80</td>
</tr>
<tr>
<td>hydraulic power</td>
<td>135</td>
</tr>
<tr>
<td>hydraulic subsystem</td>
<td>89</td>
</tr>
<tr>
<td>ICD (interface control drawing)</td>
<td>94</td>
</tr>
<tr>
<td>ice</td>
<td>125</td>
</tr>
<tr>
<td>IDEF0 (Integration for Definition Modeling – Type 0)</td>
<td>30, 35</td>
</tr>
<tr>
<td>identification of risks</td>
<td>216</td>
</tr>
<tr>
<td>incremental progress</td>
<td>186</td>
</tr>
<tr>
<td>independence, meaning of</td>
<td>224</td>
</tr>
<tr>
<td>independent authorities</td>
<td>224</td>
</tr>
<tr>
<td>independent review</td>
<td>187, 223–5</td>
</tr>
<tr>
<td>independent supplier paradigm</td>
<td>207</td>
</tr>
<tr>
<td>indicating and recording subsystem</td>
<td>128–9</td>
</tr>
<tr>
<td>indirect costs</td>
<td>120</td>
</tr>
<tr>
<td>industry standards</td>
<td>52</td>
</tr>
<tr>
<td>information interfaces</td>
<td>90</td>
</tr>
<tr>
<td>informed operator support rule</td>
<td>240</td>
</tr>
<tr>
<td>ingress</td>
<td>73</td>
</tr>
<tr>
<td>initial concepts</td>
<td>99</td>
</tr>
<tr>
<td>initial design</td>
<td>25–6</td>
</tr>
<tr>
<td>initial marketing</td>
<td>25</td>
</tr>
<tr>
<td>instrument panels</td>
<td>128–9</td>
</tr>
<tr>
<td>Integration for Definition Modeling – Type 0 (IDEF0)</td>
<td>30, 35</td>
</tr>
<tr>
<td>integrated product development (IPD)</td>
<td>13, 84, 166, 168–70, 179, 189</td>
</tr>
<tr>
<td>integrated product teams (IPT)</td>
<td>13, 169–70</td>
</tr>
<tr>
<td>Integration department</td>
<td>188</td>
</tr>
<tr>
<td>integration planning</td>
<td>181</td>
</tr>
<tr>
<td>interchangeability of spares</td>
<td>83</td>
</tr>
<tr>
<td>interdependencies</td>
<td>232, 242–3</td>
</tr>
<tr>
<td>interface control drawings (ICD)</td>
<td>94</td>
</tr>
<tr>
<td>interface documents</td>
<td>176</td>
</tr>
<tr>
<td>interface management</td>
<td>94</td>
</tr>
<tr>
<td>interface requirements</td>
<td>95</td>
</tr>
<tr>
<td>interface verification</td>
<td>96</td>
</tr>
<tr>
<td>interfaces</td>
<td>45, 87–96, 208, 212, 237</td>
</tr>
<tr>
<td>interfaces and complexity</td>
<td>204–5</td>
</tr>
<tr>
<td>interior design</td>
<td>134</td>
</tr>
<tr>
<td>interiors segment</td>
<td>14, 132–4</td>
</tr>
<tr>
<td>intermediate stability</td>
<td>206</td>
</tr>
<tr>
<td>internal interfaces</td>
<td>92–3</td>
</tr>
<tr>
<td>internal noise</td>
<td>56–7</td>
</tr>
<tr>
<td>internal organizational interfaces</td>
<td>205</td>
</tr>
<tr>
<td>internal requirements</td>
<td>52–3</td>
</tr>
<tr>
<td>internal specifications</td>
<td>175–6</td>
</tr>
<tr>
<td>internal suppliers</td>
<td>207</td>
</tr>
<tr>
<td>inter-node impediment support rule</td>
<td>241</td>
</tr>
<tr>
<td>inter-node interaction rule</td>
<td>239–40</td>
</tr>
</tbody>
</table>
IPD (integrated product development) 13, 84, 168–70, 189
phased schedule 166
suppliers 179
IPT (integrated product team) 13, 169–70
issues 223
knowledge between nodes support rule 240
landing gears 135–6
language 207
large-scale systems (LSS) 201–13
and complexity 203
and risk management 207–12
stability of 212
latent flaws 238–9
lavatories 133–4
layered defense rule 234–5
L/D (lift-drag ratio) 112
lean processes 186
life-cycle functions 23–7
lift-drag ratio (L/D) 112
lighting 132, 134
lightning 79
limit degradation support rule 233, 234, 239
loads 58, 78–9, 90
localized capacity rule 242
loose coupling rule 242
LSS (large-scale systems) 201–13
and complexity 203
and risk management 207–12
stability of 212
Maintain Structural Integrity function 39–40
maintainability 81–4
maintenance
 costs 57, 81, 119
 fixed interval 82
 interfaces 91–2
 types of 82
Maintenance organization 198–9
management buy-in 186
management responsibilities 165–8
Manufacturer’s Empty Weight (MEW) 55, 69
manufacturing 19, 27
MAP (maximum allowable probability) of failure 56
margin support rule 233, 234
Market Aircraft function 26
market analysis 24
market risk 219
marketing 25
Marketing organization 191–2
mass properties 68–70
master minimum equipment list (MMEL) 71
mathematics of reliability allocation 247–9
maximum allowable probability (MAP) of failure 56
maximum take-off weight (MTOW) 69
mechanical forces 89
mechanical segment 14, 134–6
MEL (minimum equipment list) 71, 83
metrics 120
MEW (Manufacturer’s Empty Weight) 55, 69
military aircraft 9
MIL-STD-961D 175–6, 251
mindsets 245–6
minimum equipment list (MEL) 71, 83
mission functions 33
mission statements 49–50, 173
MMEL (master minimum equipment list) 71
modularization 41
moment of inertia 70
MTOW (maximum take-off weight) 69
multifunctional teams 169
multi-tier suppliers 210–11
N² diagrams 95, 212
Navigate Aircraft function 37, 126
navigation 75, 93, 130–31
neutral state rule 242
new technologies 103–4
node and web architecture 212
noise 56–7, 80, 84
noise control 16
non-revenue operations 33
normal operations 33
off-the-table risks 222
Operate Aircraft function 27
operational interfaces 93–4
operational phase functions 31–2
operations functional view 29–30
operator risks 221
opportunities 226–7
organizational interfaces 204–5, 208, 212
organizational safety 147
organizational structure 189
organizations 187–9
outsourcing 201–3, 220
oxygen 125

“paperless” documentation 176
paradigms 187, 207
passenger accommodation 39, 114, 133
passenger operations 33
PBW (power-by-wire) 16
PDR (preliminary design review) 55, 173–4
Perform Abnormal Operations function 33
Perform Air Transport Mission matrix 30–34
Perform Certification function 27
Perform Design and Development function 26
Perform Emergency Operations function 33–4
Perform Flight Operations function 32, 34–8
Perform Freighter Operations function 33
Perform Initial Design function 25–6
Perform Initial Marketing function 25
Perform Manufacturing, Procurement, and Assembly function 27
Perform Market Analysis function 24
Perform Non-Revenue Operations function 33
Perform Normal Operations function 33
Perform Passenger and Cargo Operations function 33
Perform Post-Landing Operations function 32
Perform Pre-Flight Operations function 31
Perform Sustainment function 27
Perform Take-Off Preparations function 31–2
performance costs 119
performance requirements 44–5
peripheralization modulation 75
personnel 13
phased development 169
phased schedule integrated product development 166
physical configuration audit (PCA) 174
physical interfaces 91
physical redundancy rule 234
pilot training 225
planning 165–6
Planning organizations 198
plumbing 133–4
pneumatic subsystem 89, 125–6
post-landing operations 32
power 38
power plants 137–8
power-by-wire (PBW) 16
precipitation 80
pre-flight operations 31
preliminary design review (PDR) 55, 173–4
preliminary design 104–5
preliminary system safety assessment (PSSA) 146
pressure 78, 125
proactive resilience 231
processes, existing 185
procurement 20, 27, 178–80
procurement specifications 176
product centers 13
product improvements 52
product SE (PSE) 2–3
Production organizations 197–8
production quality 220–21
program integration 166
program management 190
project descriptions 64
project managers 64
project redirection 167
propulsion control 17
propulsion monitoring 138
propulsion segment 14, 136–8
Provide Auto Flight function 126
Provide Cargo Capability function 39
Provide Control Commands 75
Provide Environmental Control function 38–9, 114
Provide Fuel Management function 36
Provide Guidance and Navigation function 75
Provide Passenger and Crew Accommodations function 39, 114
Provide Peripheralization Modulation 75
Provide Power function 38
Provide Total Impulse function 36
PSE (product SE) 2–3
PSSA (preliminary system safety assessment) 146
pylons 137
QFD (quality function deployment) 25, 51, 100–102
qualification 163
qualitative maintainability 81
qualitative safety 147
quality circles 52
quality function deployment (QFD) 25, 51, 100–102
Quality organization 198
quantitative maintainability 81
quantitative safety requirements 144–5
rain 125
reactive resilience 231
reason 187
recurring costs 56
reduce complexity rule 236–7, 237–8
reduce hidden interactions rule 169, 236–7, 241
reduce variability support rule 237
reductionism 49, 98
redundancy equation 248
regulation 19
regulatory agencies 206, 224–5
regulatory requirements 43, 51–2, 67–8, 162
reliability 70–71, 83, 247
reliability allocation 247–9
Reliability organizations 196
Remove Aircraft from Service function 27
reorganization rule 238
repairability rule 242
requirements 195
 absolute limits 60
 allocation from functions 50
 allocation to system elements 53
assumed 51
certification categories 60–61
creep 63–5
customer 50–51
definition 43
derived 53–4, 113
design 46
development 46–50
economic 43
external 50–53
functional 43–4
harmonics 54
internal 52–3
linear addition 59–60
modeling 60
performance 44–5
reallocation 60
regulatory 43, 51–2, 67–8
sources 50–53
specialty 46, 67–86
top-down allocation 54–8
trade-offs 58–60
types 43–6
validation 61–3
weighting 60
requirements specifications 251–7
resilience 229–43
resilience engineering 229
resilience mindset 246
restructuring rule 238
rigor 7, 221
risk analysis 216–17
risk grid 216–17
risk handling 218
risk management 168, 215–27
 challenges 227
 and culture 215
 holistic 218
 and large-scale systems (LSS) 207–12
 process 216–18, 225
 tools 225–6
risk mindset 245–6
risk mitigation 222–3
risk statements 216
risk tracking 218
risks
 analysis of 216–17
 and complexity 203–7
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>consequences</td>
<td>219</td>
</tr>
<tr>
<td>definition</td>
<td>215</td>
</tr>
<tr>
<td>external causes</td>
<td>219</td>
</tr>
<tr>
<td>handling</td>
<td>218</td>
</tr>
<tr>
<td>identification</td>
<td>216</td>
</tr>
<tr>
<td>internal causes</td>
<td>220–22</td>
</tr>
<tr>
<td>mitigation</td>
<td>222–3</td>
</tr>
<tr>
<td>off-the-table</td>
<td>222</td>
</tr>
<tr>
<td>root causes</td>
<td>219–22</td>
</tr>
<tr>
<td>tracking</td>
<td>218</td>
</tr>
<tr>
<td>transfer of</td>
<td>218</td>
</tr>
<tr>
<td>unknown unknowns</td>
<td>221–2</td>
</tr>
<tr>
<td>warning signs</td>
<td>221</td>
</tr>
<tr>
<td>root causes of risks</td>
<td>219–22</td>
</tr>
<tr>
<td>safety</td>
<td>103, 144–7</td>
</tr>
<tr>
<td>safety enhancements</td>
<td>150–58</td>
</tr>
<tr>
<td>safety hazards</td>
<td>40</td>
</tr>
<tr>
<td>Safety organization</td>
<td>192–3</td>
</tr>
<tr>
<td>safety-related maintainability</td>
<td>82</td>
</tr>
<tr>
<td>sand</td>
<td>79</td>
</tr>
<tr>
<td>SATCOM</td>
<td>127</td>
</tr>
<tr>
<td>schedule optimism</td>
<td>220</td>
</tr>
<tr>
<td>SDR (system design review)</td>
<td>26, 55, 173</td>
</tr>
<tr>
<td>SE see systems engineering</td>
<td></td>
</tr>
<tr>
<td>segments</td>
<td>13–14, 118–20</td>
</tr>
<tr>
<td>SEIT (SE and integration team)</td>
<td>186, 189, 193–4</td>
</tr>
<tr>
<td>selective calling (SELCAL)</td>
<td>127</td>
</tr>
<tr>
<td>Sense Remote Objects function</td>
<td>38</td>
</tr>
<tr>
<td>service interfaces</td>
<td>91</td>
</tr>
<tr>
<td>shipside lighting</td>
<td>132</td>
</tr>
<tr>
<td>shock</td>
<td>58, 78–9, 90</td>
</tr>
<tr>
<td>signal interfaces</td>
<td>90</td>
</tr>
<tr>
<td>signs</td>
<td>134</td>
</tr>
<tr>
<td>similarity, analysis by</td>
<td>161</td>
</tr>
<tr>
<td>simulation</td>
<td>161</td>
</tr>
<tr>
<td>situational functions</td>
<td>33–4</td>
</tr>
<tr>
<td>six-part format for specifications</td>
<td>175–6</td>
</tr>
<tr>
<td>sizing</td>
<td>109–13</td>
</tr>
<tr>
<td>social factors</td>
<td>3</td>
</tr>
<tr>
<td>soft systems</td>
<td>204</td>
</tr>
<tr>
<td>software see</td>
<td></td>
</tr>
<tr>
<td>and certification</td>
<td>147–50</td>
</tr>
<tr>
<td>software constraints</td>
<td>149–50</td>
</tr>
<tr>
<td>software management</td>
<td>178</td>
</tr>
<tr>
<td>solar radiation</td>
<td>80</td>
</tr>
<tr>
<td>sole-sourcing of spares</td>
<td>83</td>
</tr>
<tr>
<td>SoS (system of systems)</td>
<td>201</td>
</tr>
<tr>
<td>sound levels</td>
<td>56–7, 73</td>
</tr>
<tr>
<td>SOW (statement of work)</td>
<td>176</td>
</tr>
<tr>
<td>span of knowledge</td>
<td>179</td>
</tr>
<tr>
<td>spares</td>
<td>83</td>
</tr>
<tr>
<td>Specialty Engineering</td>
<td></td>
</tr>
<tr>
<td>organizations</td>
<td>196</td>
</tr>
<tr>
<td>specialty requirements</td>
<td>46, 67–86</td>
</tr>
<tr>
<td>specification trees</td>
<td>12</td>
</tr>
<tr>
<td>specifications</td>
<td>175–6, 209–10</td>
</tr>
<tr>
<td>subsys</td>
<td></td>
</tr>
<tr>
<td>example</td>
<td>251–7</td>
</tr>
<tr>
<td>SRR (system requirements reviews)</td>
<td>172–3</td>
</tr>
<tr>
<td>SSA (system safety</td>
<td>146, 161</td>
</tr>
<tr>
<td>assessments)</td>
<td></td>
</tr>
<tr>
<td>stability</td>
<td>212</td>
</tr>
<tr>
<td>staffing</td>
<td>166</td>
</tr>
<tr>
<td>standards</td>
<td>52</td>
</tr>
<tr>
<td>statement of work (SOW)</td>
<td>176</td>
</tr>
<tr>
<td>static discharge</td>
<td>127</td>
</tr>
<tr>
<td>strength</td>
<td>72–3</td>
</tr>
<tr>
<td>stress</td>
<td>75</td>
</tr>
<tr>
<td>structural cooling</td>
<td>126</td>
</tr>
<tr>
<td>structural integrity</td>
<td>39–40</td>
</tr>
<tr>
<td>subsonic transports</td>
<td>15</td>
</tr>
<tr>
<td>subsystem synthesis</td>
<td>123–41</td>
</tr>
<tr>
<td>subsystems</td>
<td>12, 14–15, 144</td>
</tr>
<tr>
<td>supersonic transports</td>
<td>15</td>
</tr>
<tr>
<td>supplier contracts</td>
<td>208–10</td>
</tr>
<tr>
<td>supplier cost control</td>
<td>180</td>
</tr>
<tr>
<td>supplier evaluation</td>
<td>220</td>
</tr>
<tr>
<td>supplier management</td>
<td>20, 178–80, 206–7</td>
</tr>
<tr>
<td>Supplier Management</td>
<td>196–7</td>
</tr>
<tr>
<td>organizations</td>
<td></td>
</tr>
<tr>
<td>supplier requirements</td>
<td>178–9</td>
</tr>
<tr>
<td>supplier risks</td>
<td>219, 220</td>
</tr>
<tr>
<td>supplier specifications</td>
<td>209–10, 220</td>
</tr>
<tr>
<td>suppliers</td>
<td>207, 210–12</td>
</tr>
<tr>
<td>support equipment</td>
<td>13</td>
</tr>
<tr>
<td>support functions</td>
<td>28</td>
</tr>
<tr>
<td>support rules</td>
<td>232</td>
</tr>
<tr>
<td>surrogate customers</td>
<td>173</td>
</tr>
<tr>
<td>sustainment</td>
<td>27</td>
</tr>
<tr>
<td>SVR (system verification review)</td>
<td>174</td>
</tr>
<tr>
<td>swim lane model</td>
<td>42</td>
</tr>
<tr>
<td>Swiss cheese model</td>
<td>234–5</td>
</tr>
<tr>
<td>synthesis</td>
<td>97–105</td>
</tr>
<tr>
<td>subsystems</td>
<td>123–41</td>
</tr>
<tr>
<td>suppliers</td>
<td>179</td>
</tr>
<tr>
<td>top-level</td>
<td>107–21</td>
</tr>
<tr>
<td>synthetic vision</td>
<td>17</td>
</tr>
</tbody>
</table>
Index

system architecture 114, 173
definition of 1–2
functions 28–9
meaning of 144

system design reviews (SDR) 26, 55, 173

system integration 181
definition of 2–3
meaning of 4
organization 185
history 3–4
and integration teams (SEIT) 186, 189, 193–4
meaning of 4

system safety assessment (SSA) 146, 161
definition of 2–3

system validation 163
top-down allocation of requirements 54–8
top-level constraints 114–15
top-level synthesis 107–21
torques 89
total impulse 36
total quality management (TQM) 52
touch 74
toxic emissions 57

system verification reviews (SVR) 174

total impulse 36

system 11, 13, 107–9
definition of 1–2
functions 28–9
meaning of 144

systems architecting 107

systems engineering
application of 4
automated tools 259–60
definition of 2–3
existing 185
history 3–4
and integration teams (SEIT) 186, 189, 193–4
meaning of 4
organization 194–5
principles 167
process 3
process adaptation 183–99
standards 4

systems engineers 64

systems mindset 245

systems of systems (SoS) 201

systems requirements reviews (SRR) 172–3

systems view 7

tails 140

take-off preparations 31–2
take-off weight 111–12

TAWS (Terrain Avoidance Warning System) 239

TCAS (Traffic Collision Avoidance System) 239

technical expertise 220

technical performance management (TPM) 167, 177

technical risks 220
technical specialists 64
technological risks 219
technology readiness 103
temperature 78
termology 144, 186, 251

Terrain Avoidance Warning System (TAWS) 239

Test organizations 195
tipping point 212

top-down allocation of requirements 54–8
top-level constraints 114–15
top-level synthesis 107–21
torques 89
total impulse 36
total quality management (TQM) 52
touch 74
toxic emissions 57

TPM (technical performance management) 167, 177

TQM (total quality management) 52

traffic collision avoidance system (TCAS) 239

training 186, 225
training equipment 13
training functions 28
transportability 85

tribal knowledge 184

unknown unknowns 221–2

 Validation 61–63, 163
requirements 61–63
system 163

value-added 185

variability 188, 237
and complexity 205–6
in supplier contracts 209–10

Vee model 47–9

verification 143
analysis 160–61
in certification 159–63
of customer requirements 162
demonstrations 161
examination 162
of regulatory requirements 162
sequence 162–3
simulation 161
supervision of 168
suppliers 179
tests 160
verification matrix 159–60
very high frequency (VHF) systems 127
vibration 58, 78–9, 90
video design reviews 172
vision 73
volcanic ash 80–81, 239
wall walking 172
warning signs of risk 221
waste 133–4
water 133–4
weight 68–9, 111–12, 119
weight allocation 55
whole-systems perspective 229 see also holism
wicked systems 203
wings 109–10, 140–41
work order 166
workload 75